Differential requirement for the translocation of clostridial binary toxins: iota toxin requires a membrane potential gradient.

نویسندگان

  • Maryse Gibert
  • Jean Christophe Marvaud
  • Yannick Pereira
  • Martha L Hale
  • Bradley G Stiles
  • Patrice Boquet
  • Christophe Lamaze
  • Michel R Popoff
چکیده

Clostridial binary toxins, such as Clostridium perfringens Iota and Clostridium botulinum C2, are composed of a binding protein (Ib and C2-II, respectively) that recognizes distinct membrane receptors and mediates internalization of a catalytic protein (Ia and C2-I, respectively) with ADP-ribosyltransferase activity that depolymerizes the actin cytoskeleton. After internalization, it was found that C2 and Iota toxins were not routed to the Golgi apparatus and exhibited differential sensitivity to inhibitors of endosome acidification. While the C2-I component of C2 toxin was translocated into the cytosol from early endosomes, translocation of the Ia component of Iota toxin occurred between early and late endosomes, was dependent on more acidic conditions, and uniquely required a membrane potential gradient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CD44 Promotes Intoxication by the Clostridial Iota-Family Toxins

Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, lead...

متن کامل

Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce ...

متن کامل

Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells from Intoxication

Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA) from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The...

متن کامل

Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells Articlefrom Intoxication

Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA) from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The...

متن کامل

Clostridial Binary Toxins: Iota and C2 Family Portraits

There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 581 7  شماره 

صفحات  -

تاریخ انتشار 2007